The concentration of the chromatic number of random graphs
نویسندگان
چکیده
منابع مشابه
On the concentration of the chromatic number of random graphs
Let 0 < p < 1 be fixed. Shamir and Spencer proved in the 1980s that the chromatic number of a random graph G ∈ G(n, p) is concentrated in an interval of length ω(n) √ n. We give an improvement on this, showing that χ(G) is concentrated in an interval of length ω(n) √ n/ log n.
متن کاملThe Concentration of the Chromatic Number of Random Graphs
We prove that for every constant δ > 0 the chromatic number of the random graph G(n, p) with p = n−1/2−δ is asymptotically almost surely concentrated in two consecutive values. This implies that for any β < 1/2 and any integer valued function r(n) ≤ O(n) there exists a function p(n) such that the chromatic number of G(n, p(n)) is precisely r(n) asymptotically almost surely.
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe Chromatic Number of Random Regular Graphs
Given any integer d ≥ 3, let k be the smallest integer such that d < 2k log k. We prove that with high probability the chromatic number of a random d-regular graph is k, k + 1, or k + 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 1997
ISSN: 0209-9683,1439-6912
DOI: 10.1007/bf01215914